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1 MOST is wrong but widely used

There is no doubt that MOST is wrong. It fails in the limit of free convection. It predicts
wrong forms of the wind and temperature profiles in unstable surface layers and fails to
collapse spectra onto universal curves in unstable surface layers. Yet MOST is widely
used. Why?

The first answer is that there has been no accepted alternative. Atmospheric stability
has large effects on boundary layer processes so it must be modelled somehow. Secondly,
MOST has been widely ‘calibrated’ using observational data, and these results are con-
sistent enough that there is consensus on the ‘best’ constants to use in the various MOST
relationships. MOST is therefore widely used to parameterize boundary-layer processes.
Such parameterizations are needed when modelling the effects of buoyancy on transport
near the ground in weather models, LES formulations, etc.. This is the situation despite
its many shortcomings.

The present questions are ‘Why does it work as well as it does?’ and ‘Is there another,
more defensible way to characterize the effects of stability on turbulent transport?’

2 Let’s follow the energy

Turbulent flows are dissipative systems which, like all dissipative systems, run down and
stop unless supported by a continuous supply of energy from outside the system. Let’s
focus on that energy.

For a mechanical system such as a turbulent flow, the relevant forms of energy are the
various components of mechanical energy. Mechanical energy, EM, is kinetic energy, EK,
plus forms of potential energy that can be converted to kinetic energy. For turbulent flows
the relevant forms of energy are gravitational potential energy, Eg, which is associated
with buoyancy, and pressure potential energy, often shortened to just pressure energy,
EP. Thus

EM = EK + Eg + EP (1)

In turbulence studies energy density is usually divided by fluid density, so it has units
of velocity squared.
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Mechanical energy is not conserved in dissipative systems. Rather, dissipation rep-
resents a loss since dissipated energy cannot be converted back into kinetic energy. We
can write its material derivative as

D

Dt
(EK + Eg + EP) = −ε (2)

where ε is the dissipation rate. The minus sign on the right arises because ε is taken as
positive when it represents a loss of mechanical energy.

Equation (2) is conceptually simple but not often written in this form. The turbu-
lence community knows it better when transformed into an Eulerian frame of reference
and rewritten with each variable divided into ensemble-averaged and deviation-from-
average parts. It then becomes two equations, one for the mechanical energy of the
mean flow, and the other for that associated with the fluctuating components. The
latter is known as the Reynolds-averaged Navier-Stokes (RANS) energy equation, even
while the Navier-Stokes equations are not necessary for its derivation. Equation (2) and
the RANS energy equation rely simply on the definitions of mechanical energy and its
components along with the principle of conservation of energy.

If we want to look at the effects of buoyancy on a flow then one way to do that is to
look at the contribution that buoyancy makes to the supply of mechanical energy. We
look at the ratio

D
DtEg

D
Dt(EK + Eg + EP)

(3)

which is simplified greatly when we notice that the denominator is simply the dissipation
rate. This ratio will, no doubt, be sensitive to the effects of buoyancy in any flow. If we
apply (3) to the representative average for air parcels that cross a thin horizontal slice
of the atmosphere above level ground then it can be written as

− g w′θ′

ε θ
(4)

where w′θ′ is the heat flux, and ε the dissipation rate at height z. If that slice lies within
an atmospheric boundary layer then the heat flux flux decreases with height according
to

w′θ′ = (H0 +Hi)

(
1− z

zi

)
(5)

where H0 and Hi are the heat flux at the ground and at inversion height, zi, respectively.
Now let us move into MOST territory by considering relationships within the atmo-

spheric surface layer at the base of a CBL. First assume z/zi to be negligably small, as
is consistent with the reasoning of Monin and Obukhov, and let Hi/H0 be a constant,
say 0.8, in the absence of a fuller treatment of the energy balance of the whole CBL.
Next we write the dissipation rate as

ε =
u3ε
k z

(6)
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With these approximations and assumptions and neglecting the 0.8 factor, our energy
flow ratio becomes

− k z g H0

u3ε θ
(7)

This looks very like the MOST expression for −z/L, except that uε replaces u∗. We
therefore define a modified Monin-Obukhov length, Lε by

Lε = − u3ε θ

k g H0
(8)

An advantage of this length over the MOST length is that it continues to apply in
the limit of windless convection. This is because the large eddies cause variable shear
stresses, and so create dissipation near the ground even in that limit. That is, (7) takes
account of this effect of the large eddies in the CBL while MOST does not. It provides
an alternative to MOST and it works in free convection. Its rationality contrasts with
the fix proposed by Beljaars (1994), who avoided a zero limit for L in free convection by
adding a term proportional to Deardorff’s outer convection velocity squared, w2

∗, when
writing the drag relationship for u2∗. Equation (6) does not describe dissipation above
the surface friction layer, so (7) does not apply above that layer.

Lε itself has some limitations. According to (5) it relies on z being small and the
entrained heat flux being in fixed ratio to the surface heat flux. These assumptions
create an uncertainty of at least 10% when used over a range of situations. Also, (7)
applies only where (6) applies, which is to say in the dynamic and dynamic-convective
sublayers of the surface layer, as designated by Kader and Yaglom (1990). These two
layers combined have also been called the surface friction layer (SFL) because this is the
layer where surface drag directly causes extra dissipation.

More generally, our definition of Lε is based on the knowledge that energy flow is
an important determinant of eddy properties in any turbulent flow, this together with
information on how that energy flow depends on height in the surface friction layer. This
does not guarantee that −z/Lε is sufficient to fully describe the turbulence at a given
heigh since other factors, such as zi or z0, may also be involved. Further refinement
would require further empirical information and/or modelling. By contrast, MOST
simply asserts that no other parameters are involved beyond those included in its basis
set, which set includes u∗ but excludes uε.

3 Relationship between Lε and zs

Another route to deriving a scale length for the surface layer is by conceptual modelling
of the turbulence processes themselves. This route was taken by (McNaughton, 2004;
McNaughton et al, 2007) who proposed that the momentum-carrying eddies of the SFL
are organized in upscale cascades of attached eddies, which structures compete for space
as they grow, resulting in the self-similar turbulence properties observed in the log layer.
These cascades grow until disrupted by outer eddies supported by a stronger flow of
mechanical energy in the outer layer, which flow equals the outer dissipation rate, εo.
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The outer dissipation rate is observed to be constant with height through the CBL above
the SFL. The height of the SFL is then given by

zs =
u3ε
kεo

(9)

so the height of the SFL, zs becomes an important length scale when describing turbu-
lence processes within the SFL.

The ratio of zs to the traditional Obukhov length is given by

−zs
L

=
u3∗
u3ε

(10)

We know that −z/L can characterize the height of the SFL fairly well, with 1 < −z/L <
2 at the transition in several experiments, so 0.5 < −zs/L < 1. Clearly the ratio −zs/L
is not constant but depends on the effects of the large eddies via the ratio on the right of
(10), being larger in nearer-neutral conditions and smaller in more convective conditions.
This dependency explains the observed scatter when zs is plotted against L, as reported
by Chowdhuri and McNaughton (2019).

Perhaps Lε can do better than L? The ratio of zs to the modified Obukhov length,
Lε, is given by

− zs
Lε

=
g H0

εo θ
(11)

so Lε also correlates with zs. If zs and Lε are to be perfectly correlated then εo must be
proportional to g H0/θ. To investigate such a relationship we first look at the Deardorff
convective velocity scale, defined by

w3
∗ =

zi g H0

θ
(12)

Substitution into (11) then gives

− zs
Lε

=
w3
∗

zi εo
(13)

We note that (ziεo)
1/3 is closely related to the outer velocity scale (λεo)

1/3 defined by
Chowdhuri and McNaughton (2019) so, to the extent that w∗ is that same velocity scale
to within a constant O(1) the right hand side of (13) should be a constant O(1). There
have been no empirical investigations to confirm this.

Another approach is to look at the empirical investigations of Kader and Yaglom
(1990). They find that

εo = 1.1 g H0/θ (14)

in the convective sublayer. This relationship was confirmed, with reduced scatter, by
Chowdhuri and McNaughton (2019). Substituting this into (11) gives

− zs
Lε

= 1.1 (15)
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Some caution should be expressed here. If we consider (14) in the context of the
mechanical energy budget of the whole CBL then it says that more mechanical energy is
being dissipated in the CBL than is delivered as gravitational potential energy. That is
unreasonable in free-convection conditions since there can be no entrainment of kinetic
energy in such conditions. Allowing also for some work to be done against buoyancy dur-
ing entrainment, the constant in (15) should be a little less than one in this limit. This
assessment supposes that H0 was measured accurately in the Tsimlyansk and SLTEST
studies. However, H0 was measured by eddy covariance in both studies, which method
typically underestimates fluxes by about 15% (Massman and Lee, 2002). In less con-
vective conditions, as the contribution of entrained kinetic energy increases, the height
of the SFL increases and extra dissipation in that layer cannot be neglected. We note
that both Kader and Yaglom (1990) and Chowdhuri and McNaughton (2019) analysed
data from rather highly convective conditions, so (15), while encouraging as it stands,
it requires further investigation.

Clearly there is scope for a new analysis of the energy budgets of CBL flows over a
wider range of stabilities. The Tsimlyansk and SLTEST experiments were both limited
by their abilities to measure εo directly, which is to say by the heights of their towers.
The tower at Tsimlyansk was 80m over grasslands (with z0 ∼ .02m) and at SLTEST
the top instrument was at 25.7 m over a smooth playa surface (with z0 ∼ .0005m).
Also, neither experiment measured zi directly, so neither could observe the relationship
between zi and λ.

4 Conclusions

MOST works as well as it does because it gets some things right. It follows Richardson
(1920) in identifying the surface heat flux as an important influence on turbulence prop-
erties near the ground, and it identifies the surface shear layer as the environment in
which those properties are expressed. What it gets wrong is that it also follows Richard-
son by neglecting the effects of the upper boundary to the flow, and the way that energy
flows down through the outer flow to influence turbulence properties near the ground.

There is another way to characterize the effects of stability on turbulent transport,
and that way puts the energy flow through the boundary-layer system at its conceptual
centre. This can be done either by modelling the ratio of the flow of gravitational
potential energy to total mechanical energy, either directly and empirically or in the
context of a conceptual model of turbulence processes near the ground. It seems that
both give similar results for the surface friction layer beneath a convective atmospheric
boundary layer. The conceptual model of McNaughton (2004); McNaughton et al (2007)
also interprets its length scale, zs, as the physical height of the surface friction layer.

We have addressed the surface friction layers beneath CBLs. The length scale Lε may
also be useful in near-neutral ABLs in which the surface shear layer extends upwards to
occupy the whole NNBL, so zs has no meaning in NNBLs. Also, uε approaches u∗ as
neutrality is approached, so unmodified MOST should work somewhat better in NNBLs
than in CBLs. Perhaps this is the reason why the Kansas spectra, which were binned
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according to z/L values before averaging, were fairly orderly in near-neutral conditions
out to −z/L = 0.3, but rather disorderly at greater instabilities.
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